If C0,C1,C2,…,Cn denote the binomial coefficients of the expansion (1+x)n and n∑r=0(−1)rnCr[12r+3r22r+7r23r+… upto m terms]=amn−1bmn(cn−1), then
A
a=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
c=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a−b+c=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
a+b−c=4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ca−b+c=2 Let S=n∑r=0(−1)rnCr[12r+3r22r+7r23r+… upto m terms] =n∑r=0(−1)rnCr[(12)r+(34)r+(78)r+…+(2m−12m)r]=n∑r=0nCr(−12)r+n∑r=0nCr(−34)r+…+n∑r=0nCr(−2m−12m)r=(1−12)n+(1−34)n+…+(1−2m−12m)n=12n+(12n)2+(12n)3+…+(12n)m=12n((12n)m−1)12n−1=1−2mn2mn(1−2n)∴S=2mn−12mn(2n−1)