If C0,C1,⋯Cn are the coefficient of x in expansion of (1+x)n, then C0−C2+C4−C6+⋯+(−1)nCn=
A
(2)n/2cosnπ4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(2)n/2sinnπ4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(2)nsinnπ4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(2)ncosnπ4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(2)n/2cosnπ4 Consider (1+x)n=C0+C1x+C2x2+⋯+Cnxn Put x=i where i=√−1 (1+i)n=C0+C1i+C2i2+C3i3+...... =(C0−C2+C4−C6)+i(C1−C3+C5) ⇒C0−C2+C4−C6+....=Real part of (1+i)n =Re[(√2)n(1√2+i√2)n] =Re[(√2)n(cosπ4+isinπ4)n] =Re[(√2)n(cosnπ4+isinnπ4)](De' moivre's theorem) =(2)n/2cosnπ4