The equation of orders through
(x1,y1) and (x2,y2)
⇒(x−x1)(x−x2)+(y−y1)(y−y2)+λr∣∣
∣∣xy1x1y11x2y21∣∣
∣∣=0
(r=1,2,3)
Let (h,k) be a point on circle c1
Then,$\phi(h,k)+\lambda p(h,k)=0 \rightatrrow(1)$
Where ϕ(h,k)=(h−x1)(h−x2)+(k−y1)(k−y2)
and p(h,k)=∣∣
∣∣hk1x1y11x2y21∣∣
∣∣
Let T2 be the length of tangent from (h,k) to C_{2}andT_{3}bethelengthoftangentfrom(h,k)toC_{3}$,
then :
T2=√ϕ(h,k)+λ2p(h,k)
T3=√ϕ(h,k)+λ3p(h,k)
(∵ The length of tangent from (x1,y1) to the circle s=0 is√s11)
⇒T2T3=√ϕ(h,k)+λ2(h,k)√ϕ(h,k)+λ3p(h,k)
=√(λ2−λ1)p(h,k)(λ3−λ1)p(h,k)
(∵ϕ(h,k)=−λ1p(hk) (from (1)))
=√(λ2−λ11)(λ3−λ1)
⇒T2T3=constant