If C1,C2,C3are the usual binomial coefficients and S=C1+2C2+3C3+...+nCn, then S equals
n2n
2n-1
n2n-1
2n+1
Explanation for the correct options:
Step1 : Expansion of (1+x)n
(1+x)n=C0+C1x+C2x2+...+Cnxn
Step2 : Differentiating with respect to x
n(1+x)n=C1+2C2x+...+nCnxn-1
Put x=1,
C1+C22+....+Cnn=n2n-1
Hence, the correct option is (C)
If C0,C1,.....,Cβ denote the binomial coefficients in the expansion of(1+x)n. Then, the value of C1-C22+C33-C44+....(up to n terms) is