wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ccos3θ+3ccosθsin2θ=m, csin3θ+3ccos2θsinθ=n then Find a if (m+n)a/3+(mn)a/3=2ca/3.

Open in App
Solution

m+n=c[sin3θ+cos3θ+3sinθcosθ(sinθ+cosθ)]
m+n=c(sinθ+cosθ)3
(m+n)a3=ca3(sinθ+cosθ)a
and mn=c[cos3θsin3θ3cosθsinθ(cosθsinθ)]
mn=c(cosθsinθ)3
(mn)a3=ca3(cosθsinθ)a
Now, (m+n)a3+(mn)a3=ca3[(sinθ+cosθ)a+(cosθsinθ)a]
If a=2
Then, (m+n)a3+(mn)a3=2ca3
Therefore a=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon