The correct option is
D (3n−22)2nCn(1+x)n=nC0+nC1x+nC2x2+...+nCnxn(1+1x)n=nC0+nC1x+nC2x2+...+nCnxn
(1+x)n(1+1x)n=(nC0+nC1x+nC2x2+...+nCnxn)(nC0+nC1x+nC2x2+...+nCnxn)
In RHS nC02+nC12+...+nCn2 comes as constant term.
So, nC02+nC12+...+nCn2 is constant term in (1+x)(1+1x)n
=(1+x)2nxn
The constant term in (1+x)2nxn is 2nCn as xnxn gets cancelled.
So, nC02+nC12+...+nCn2=2nCn
(1+x)n=nC0+nC1x+nC2x2+...+nCnxn
by differentiating
n(1+x)n−1=0.nC0+1.nC1+2.nC2x+...+n.nCnxn−1
(1+1x)n=nC0+nC1x+nC2x2+...+nCnxn
By multiplying
n(1+x)n−1×(1+1x)n=(.nC0+1.nC1+2.nC2x+...+nnCnxn−1)×(nC0+nC1x+nC2x2+...+nCnxn)
So, 0.nC02+1.nC12+2.nC22+...+n.nCn2 is coefficient of 1n in RHS
So, it is 1n term in n(1+x)n−1×(1+x)nxn
i.e. n.2n−1Cn−1=n2.2nCn
So, ∑(3n−1)Cn2=3∑nCn2−∑Cn2
=3n2.2nCn−2nCn=3n−22×2nCn