If C denotes the counterclockwise unit circle, the value of the contour integral 12πj∮CRezdz is
C:|z|=1⇒z=eiθ & dz=jejθdθ where 0≤θ≤2π 12πj∮CRezdz=12πj∫2π0Re(ejθ)jejθdθ =12πj∫2π0cosθ.j(cosθ+jsinθ)dθ =12π[∫2π0cos2θdθ−∫2π0cosθsinθdθ] =12π(π−0)=12
In the following integral, th contour C encloses the points 2πj and −2πj. −12π∮Csinz(z−2πj)3dz The value of the integral is
The value of the contour integral 12πj∮(z+1z)2dz evaluated over the unit circle |z|=1 is
The value of the integral 12πj∮Cz2+1z2−1dz where z is a complex number and C is a unit circle with center at 1+0j in the complex plane is