If c is an arbitrary constant then ∫cos(x+a)sin(x+b)dx=
A
cos(a−b)ln|sin(x−b)|−xsin(a−b)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cos(a−b)ln|sin(x+b)|−xsin(a−b)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cos(a+b)ln|sin(x+b)|−xsin(a+b)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cos(a−b)lnsin|(x+b)|−xsin(a+b)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
E
cos(a−b)ln|sin(x+b)|+xsin(a−b)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bcos(a−b)ln|sin(x+b)|−xsin(a−b)+c ∫cos(x+a)sin(x+b)dx =∫cos(x+b+a−b)sin(x+b)dx =∫cos(x+b)cos(a−b)−sin(x+b)sin(a−b)sin(x+b)dx =cos(a−b)∫cot(x+b)dx−sin(a−b)∫dx =cos(a−b)ln|sin(x+b)|−xsin(a−b)+C