wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If C is centre of a hyperbola x2a2āˆ’y2b2=1, S,Sā€² its foci and P a point on it. Then SP.Sā€²P=CP2āˆ’a2+b2.

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! Weā€˜ve got your back. Try BYJUā€˜S free classes today!
Open in App
Solution

The correct option is A True
Given Hyperbola: x2a2y2b2=1----------1
S & S' are foci(ae,0) and (ae,0)
C: Centre(0,0)
P: (x1,y1)
a point on Hyperbola.
x21a2y21b2=1------------2
Now calculating SP,SP,CP
¯¯¯¯¯¯¯¯¯SP=(x1+ae)2+(y10)2=(x1+ae)2+(y1)2--------------3
¯¯¯¯¯¯¯¯SP=(x1ae)2+(y10)2=(x1ae)2+(y1)2----------------4
CP2=(x10)2+(y10)2=(x1)2+(y1)2-----------5
Now, SPSP=[(x1+ae)2+y21][(x1ae)2+(y1)2]
LHS=y21(x1+ae)2+y21(x1ae)2+y41+(x1+ae)2(x1ae)2
=y21(x1+ae)2+y21(x1ae)2+y41+[x21a2e2]2
=y21(2x21+2a2e2)+y41+[x41+a4e42x21a2e2]
=2x21y21+2a2e2y21+y41+x41+a4e42x21a2e2
=x41+2a2e2(y21x21)+a4e4+2x21y21+y41
=(x21+y21a2+b2)2

LHS=x21+y21a2+b2
RHS=CP2a2+b2=x21+y21a2+b2-------(from Equation 5)
So, we can see LHS=RHS.
i.e. SPSP=CP2a2+b2


1010636_1049561_ans_bc4b947c9b104305a44c8671e5a0591c.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Hyperbola and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon