If C is the center and A,B are two points on the conic 4x2 + 9y2 -8x -36y +4=0
∠ ACB =π2 , then CA−2 + CB−2 + 2336 =
Given eqn. is 4( x−1)2 + 9( y−2)2 =36 which is an ellipse C=(1,2)
Let CA make an angle θ with the major axis.
A= (1 + CA cosθ , 2 + sinθ)
B= (1+ CB cos [π2 +θ] , 2 + CB sin[π2 +θ])
A,B then on the ellipse
⇒ CA2 ( 4 cos2θ +9sin2θ) =36
CB2 ( 4 sin2θ +9cos2θ) =36
⇒ CA−2 + CB−2 = 1336