C0C2+C1C3+C2C4+..........+Cn−2Cn=2nCn+2
(1+x)n=nC0+nC1x+nC2x2+nC3x3+......+nCnxn........(1)
(x+1)n=nC0xn+nC1xn−1+nC2xn−2+......+nCn........(2)
multiplying equation (1) & (2)
(1+x)2n=(nC0+nC1x+nC2x2+....+nCnxn)(nC0xn+nC1xn−1+nC2xn−2+......+nCn).
Now required expression is coefficient of xn−2in(1+x)2n=2nCn−2=2nCn+2