xr coefficient in (1+x)99=99Cr
So Cr represents here 99Cr
(1+x)99=C0+C1x+C2x2+C3x3+…+C99x99
⇒x(1+x)99=C0x+C1x2+C2x3+C3x4+…+C99x100=
Differentiating wrt x on both sides
99x(1+x)98+(1+x)99=C0+2C1x+3C2x2+4C3x3+…+(100)C99x99=
By putting x=−1, we get
C0−2C1+3C2−4C3+…100C99=0
Alternate solution:
C0−2C1+3C2−4C3+…100C99=99∑r=0(−1)r(r+1)Cr (Here Cr=99Cr)
=∑r=0(−1)rr99Cr+99∑r=0(−1)rCr=99∑r=1(−1)r⋅98⋅ 98Cr−1+99∑r=0 99Cr(−1)r [∵ 99Cr 98Cr−1=99r]
=(−1)9899∑r=1 98Cr−1(−1)r−1+0 [∵n∑r=0(a)r nCr=(1+a)n]
=0