The binomial expansion of (1+x)n and (1+1x)n is given by
(1+x)n=C0+C1x+C2x2+....+Cnxn=∑r=nr=0Crxr ....[1]
(1+1x)n=C0+C11x+C21x2+....+Cn1xn=∑r=nr=0Cr1xr ....[2]
To find the value of S2, we can multiply above two equations and then compare the coefficients of terms independent of x.
Multiplying equation [1] and [2], we get
(1+x)n(1+1x)n=∑r=nr=0Crxr.∑r=nr=0Cr1xr
⟹(1+x)2nxn=∑r=nr=0Crxr.∑r=nr=0Cr1xr
⟹(1+x)2nxn=C20+C21+C22+...+C2n + terms containing x
Therefore, comparing coefficients of x0 in L.H.S and R.H.S, we get
Coefficients of x0 in R.H.S = Coefficients of x0 in L.H.S
⟹C20+C21+C22+...+C2n= coefficient of x0 in (1+x)2nxn
⟹C20+C21+C22+...+C2n=2nCn=S2 ....[3]
(1+1x)n=C0+C11x+C21x2+....+Cn1xn
Differentiating with respect to x, we get
⟹n(1+1x)n−1(−1x2)=0+C1−1x2+C2−2x3+....+Cn−nxn+1
⟹n(1+1x)n−1(1x)=C11x+C22x2+....+Cnnxn ....[4]
To find the value of S1, we can multiply equations [1] and [4], and then compare the coefficients of terms independent of x.
Multiplying equation [1] and [4], we get
n(1+1x)n−1(1x)(1+x)n=(C11x+C22x2+....+Cnnxn)(C0+C1x+C2x2+....+Cnxn)
⟹n(x+1)2n−1xn=(C11x+C22x2+....+Cnnxn)(C0+C1x+C2x2+....+Cnxn)
Therefore, comparing coefficients of x0 in L.H.S and R.H.S, we get
Coefficients of x0 in R.H.S = Coefficients of x0 in L.H.S
⟹C21+2C22+3C23+...+nC2n= coefficient of x0 in n(x+1)2n−1xn
⟹C21+2C22+3C23+...+nC2n=n(2n−1Cn)=S1
Therefore,
3S1−S2=3n(2n−1Cn)−2nCn
=3n(2nCn)2−2nCn
=(3n−22)2nCn
Hence, the answer is option (B)