If Cr means nCr then C01+C23+C45+⋯=
2nn+1
Consider the expansion
(1+x)n=C0+C1x+C2x2+C3x3+C4x4+⋯+Cnxn . . .(i)
Integrating both sides of (i) within limits - 1 to 1, we get
∫1−1(1+x)ndx=∫1−1(C0+C1x+C2x2+C3x3+C4x4+⋯+Cnxn)dx=∫1−1(C0+C2x2+C4x4+⋯)dx+∫1−1(C1x+C3x3+⋯)dx=2∫10(C0+C2x2+C4x4+⋯)dx+0
(By Prop. of definite integral)
(since second integral contains odd function)
(1+x)n+1n+1]1−1==2(C0x+C2x33+C4x55+⋯)]102n+1n+1=2(C0+C23+C45+⋯)
Hence C0+C23+C45+⋯=2nn+1