If Cr stands for nCr, then the sum of the series 2(n2)!(n2)!n![C20−2C21+3C22+...+(−1)n(n+1)C2n] where n is an even positive integer is
C20−2C21+3C22−4C23+....+(−1)n(n+1)C2n
=(C20−C21+C22−C23+....+(−1)nC2n)−(C21−2C22+3C23+....+(−1)nnC2n)
=(−1)n2n!(n2)!(n2)!−(−1)n2−1n2nCn2=(−1)n2n!(n2)!(n2)!(1+n2)
Thus 2(n2)!(n2)![C20−2C21+3C22−C23+....+(−1)n(n+1)C2n]=(−1)n2(n+2)