If C0+C1+C2+...+Cn=256, then 2nCn is equal to
(a) 56
(b) 120
(c) 28
(d) 91
Correct option is (b) 120
We know that,
(x+a)n=nC0xn+nC1xn−1a1+nC2xn−2a2+....+nCnan
Putting, x=a=1, we get,
⇒2n=C0+C1+C2+...+Cn
⇒2n=256
⇒2n=28
∴n=8
Hence, 2nCn=16C8
=16!8!8!
=16×15×14×13×12×11×10×98×7×6×5×4×3×2
=120