If CE is parallel to DB in the given figure, then the value of ‘x’ will be:
Open in App
Solution
In ΔABD ∠ADB+30∘+110∘=180∘ [Angle sum property of a triangle] ⇒∠ADB=40∘
So, ∠BDC=75∘−40∘=35∘ ∠ECF=∠BDC=35∘
(∵ Given:CE || DB, using corresponding angles axiom)
Now, DF is a straight line
So, 60∘+x+35∘=180∘ ⇒x=180∘−95∘ ∴x=85∘