Let P be (2√3cosθ,2√2sinθ)
Tangent at P:
xcosθ2√3+ysinθ2√2=1
Normal at P:
2√3xcosθ−2√2ysinθ=4
The point where normal meets major axis is,
x=4cosθ2√3=2cosθ√3
∴G≡(2cosθ√3,0)
Now, CF= Distance of (0,0) from the tangent line
=|0+0−1|
⎷(cosθ2√3)2+(sinθ2√2)2
⇒CF=2√6√2+sin2θ
Also, PG=
⎷(2cosθ(√3−1√3))2+(2√2sinθ)2
=2√2(√2+sin2θ)√3
∴CF⋅PG=8