If CF is perpendicular from the centre C of the ellipse x249+y225=1 on the tangent at any point P, and G is the point where th e normal at P meets the minor axis, then (CF⋅PG)2 is equal to
Equation of the tangent at P(7 cos θ,5 sin θ) on the ellipse is x7 cos θ+y5 sin θ=1then (CF)2=72×5252 cos2θ+72 sin2 θ=25×4925 cos2 θ+49 sin2 θ
Equa tion of the normal at P is
7xcosθ−5ysin θ=72−52
Coordintes of G are (0,−24sinθ5)
(PG)2=(7 cos θ)2+(5sinθ+24sinθ5)2=4925(25 cos2 θ+49 sin2 θ)So (CF⋅PG)2=(49)2=2401