The correct option is B sin4θb2=cos4θa2
We have sin4θa+cos4θb=1a+b
(a+b)(sin4θa+cos4θb)=(sin2θ+cos2θ)2
⇒sin4θ+cos4θbasin4θ+abcos4θ=cos4θ+cos4θ+2sin2θcos2θ
⇒(√basin2θ−√abcos2θ)2=0
⇒bsin2θ=acos2θ
sin2θa=cos2θb=sin2θ+cos2θa+b
⇒sin2θ=aa+b;cos2θ=aa+b
clearly, these values satisfy options (a),(c),(d)