If chord PQ of a circle have length equal to the radius then the distance of chord from centre in terms of radius is
A
√34r
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
√52r
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3√32r
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√32r
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D√32r Given−PQisachordofacirclewithcentreOsuchthatOP=OQ=r=PQwhenristheradiusofthecircle.Tofindouth=ON,thedistanceofPQfromO.Solution−ΔOPQisequilateralsinceallitssides=r.Nowheightofanequilateraltrianglewithside=ais√32aanditbisectsthebaseatrightangle.Herea=r.∴Theheight=ON=h=√32r.=ButONisthedistanceofthechordPQfromOsincetheperpediculardistanceofachordfromthecentrebisectsthechordatrightangle.Soh=ON=√32risthedistanceofthechordPQfromO.Ans−OptionD.