If cos−1x−cos−1(y2)=α, then 4x2−4xycosα+y2=
Consider the given equation.
cos−1x−cos−1(y2)=α …….. (1)
We know that
cos−1x−cos−1y=cos−1{xy+√1−x2√1−y2}
Therefore,
cos−1{xy2+√1−x2√1−y42}=α
xy2+√1−x2√1−y42=cosα
√1−x2√1−y42=cosα−xy2
On squaring both sides, we get
(1−x2)(1−y42)=cos2α+x2y24−xycosα
(1−x2)(4−y42)=4cos2α+x2y2−4xycosα4
(1−x2)(4−y2)=4cos2α+x2y2−4xycosα
4−y2−4x2+x2y2=4cos2α+x2y2−4xycosα
4−y2−4x2=4cos2α−4xycosα
4=4(1−sin2α)−4xycosα+y2+4x2
4=4−4sin2α−4xycosα+y2+4x2
4x2−4xycosα+y2=4sin2α
Hence, this is the answer.