If cos−1α+cos−1β
+cos−1γ=3π, then
α(β+γ)+β(γ+α)+γ(α+β) equals
cos−1α+cos−1β+cos−1γ=3π
∴0≤cos−1x≤π
⇒cos−1α+cos−1β+cos−1γ=3π
if and only if
cos−1α=cos−1β=cos−1γ=π
⇒α=β=γ=−1
[∵cos−1(−1)=π]
⇒α(β+γ)+β(γ+α)+γ(α+β)
=−1(−1−1)−1(−1−1)−1(−1−1)=2+2+2
=6
Therefore, option (c) is correct.