If cos−1x3+cos−1y2=θ2, then 4x2−12xycosθ2+9y2is equal to:
given, cos−1x3+cos−1y2=θ2
⇒cos(cos−1x3+cos−1y2)=cosθ2
[∵cos(A+B)=cosAcosB−sinAsinB]
∴cos(cos−1x3)cos(cos−1y2)−sin(cos−1x3)sin(cos−1y2)=cosθ2
⇒cos(cos−1x3)cos(cos−1y2)−sin(sin−1√1−x29)sin(sin−1√1−y24)=cosθ2
⇒xy6−√1−x29√1−y24=cosθ2
⇒xy6−√9−x2√4−y26=cosθ2
⇒xy−√9−x2√4−y2=6cosθ2
⇒−√9−x2√4−y2=6cosθ2−xy
Squaring both sides, we get
⇒(9−x2)(4−y2)=36cos2θ2+x2y2−12xycosθ2
⇒36−9y2−4x2+x2y2=36cos2θ2+x2y2−12xycosθ2
⇒−9y2−4x2+12xycosθ2=36cos2θ2−36
⇒9y2+4x2−12xycosθ2=−36cos2θ2+36
⇒9y2+4x2−12xycosθ2=36(1−cos2θ2)
⇒9y2+4x2−12xycosθ2=36(sin2θ2)
⇒9y2+4x2−12xycosθ2=18(2sin2θ2)
⇒9y2+4x2−12xycosθ2=18(1−cosθ)
∴9y2+4x2−12xycosθ2=18−18cosθ