wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos1x3+cos1y2=θ2, then 4x212xycosθ2+9y2is equal to:

A
36
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3636cosθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1818cosθ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
18+18cosθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1818cosθ

given, cos1x3+cos1y2=θ2


cos(cos1x3+cos1y2)=cosθ2


[cos(A+B)=cosAcosBsinAsinB]


cos(cos1x3)cos(cos1y2)sin(cos1x3)sin(cos1y2)=cosθ2


cos(cos1x3)cos(cos1y2)sin(sin11x29)sin(sin11y24)=cosθ2


xy61x291y24=cosθ2


xy69x24y26=cosθ2


xy9x24y2=6cosθ2


9x24y2=6cosθ2xy


Squaring both sides, we get

(9x2)(4y2)=36cos2θ2+x2y212xycosθ2


369y24x2+x2y2=36cos2θ2+x2y212xycosθ2


9y24x2+12xycosθ2=36cos2θ236


9y2+4x212xycosθ2=36cos2θ2+36


9y2+4x212xycosθ2=36(1cos2θ2)


9y2+4x212xycosθ2=36(sin2θ2)


9y2+4x212xycosθ2=18(2sin2θ2)


9y2+4x212xycosθ2=18(1cosθ)


9y2+4x212xycosθ2=1818cosθ



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon