wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos1xa+cos1yb=α, prove that x2a22xyabcosα+y2b2=sin2α.

Open in App
Solution

cos1xa+cos1yb=α[cos1x+cos1y=cos1(xy(1x2)(1y2))]cos1[xayb(1x2a2)(1y2b2)]=αcosα=xyab(1x2a2)(1y2b2)(1x2a2)(1y2b2)=(xyabcosα)Squaringonbothside(1x2a2)(1y2b2)=(xyab)22xyabcosα+cos2α1y2b2x2a2+(xyab)2=(xyab)22xyabcosα+cos2α1cos2α=y2b22xyabcosα+x2a2sin2α=y2b22xyabcosα+x2a2Proved

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon