cos−1xa+cos−1yb=α[∵cos−1x+cos−1y=cos−1(xy−√(1−x2)(1−y2))]cos−1[xa⋅yb−√(1−x2a2)(1−y2b2)]=αcosα=xyab−√(1−x2a2)(1−y2b2)√(1−x2a2)(1−y2b2)=(xyab−cosα)Squaringonbothside(1−x2a2)(1−y2b2)=(xyab)2−2xyabcosα+cos2α1−y2b2−x2a2+(xyab)2=(xyab)2−2xyabcosα+cos2α1−cos2α=y2b2−2xyabcosα+x2a2sin2α=y2b2−2xyabcosα+x2a2Proved