The correct option is B 5/4
cos−1xa+cos−1yb=5π12→(i)sin−1xa−sin−1yb=π12→(ii)Addingequation(i)and(ii)⇒(sin−1xa+cos−1xa)+cos−1yb.sin−1yb=6π12⇒π2+π2−sin−1yb−sin−1yb=π2⇒π2−2sin−1yb=0[∵sin−1θ+cos−1θ=1]⇒sin−1yb=π4∴yb=1√2Puttingsin−1yb=π4inequation(ii)⇒sin−1xa−π4=π12⇒sin−1xa=π12=3π12⇒sin−1xa=π3∴xa=√32Hence,x2a2+y212=12+34=54Ans.