If cos−1(cosx5)=x−10π5 holds good for some x∈R, then the number of integral values of x satisfying it is
Open in App
Solution
let t=x5 ∴cos−1(cost)=t−2π
From the above graph clearly cos−1(cosx)=x−2π when x∈[2π,3π]
So, here t∈[2π,3π] ⇒x5∈[2π,3π] ⇒x∈[10π,15π] ⇒x∈[31.4,47.1] ∴ Number of integral values of x=16