Consider the given equation.
cos−1(pa)+cos−1(qb)=α
We know that
cos−1x+cos−1y=cos−1{xy−√1−x2√1−y2}
Thus,
cos−1⎧⎨⎩pa×qb−√1−(pa)2√1−(qb)2⎫⎬⎭=α
pqab−√(a2−p2a2) ⎷(b2−q2b2)=cosα
pqab−√(a2−p2)√(b2−q2)ab=cosα
pq−√(a2−p2)√(b2−q2)ab=cosα
pq−√(a2−p2)√(b2−q2)=abcosα
pq−abcosα=√(a2−p2)√(b2−q2)
On squaring both sides, we get
p2q2+a2b2cos2α−2abpqcosα=(a2−p2)(b2−q2)
p2q2+a2b2cos2α−2abpqcosα=a2b2−a2q2−b2p2+p2q2
a2b2cos2α−2abpqcosα=a2b2−a2q2−b2p2
a2q2+b2p2−2abpqcosα=a2b2(1−cos2α)
a2q2+b2p2−2abpqcosαa2b2=sin2α
q2b2+p2a2−2pqabcosα=sin2α
p2a2−2pqabcosα+q2b2=sin2α
Hence, proved.