wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos1(pa)+cos1(qb)=α, Then prove that p2a22pqabcosα+q2b2=sin2α

Open in App
Solution

Consider the given equation.

cos1(pa)+cos1(qb)=α

We know that

cos1x+cos1y=cos1{xy1x21y2}

Thus,

cos1pa×qb1(pa)21(qb)2=α

pqab(a2p2a2) (b2q2b2)=cosα

pqab(a2p2)(b2q2)ab=cosα

pq(a2p2)(b2q2)ab=cosα

pq(a2p2)(b2q2)=abcosα

pqabcosα=(a2p2)(b2q2)

On squaring both sides, we get

p2q2+a2b2cos2α2abpqcosα=(a2p2)(b2q2)

p2q2+a2b2cos2α2abpqcosα=a2b2a2q2b2p2+p2q2

a2b2cos2α2abpqcosα=a2b2a2q2b2p2

a2q2+b2p22abpqcosα=a2b2(1cos2α)

a2q2+b2p22abpqcosαa2b2=sin2α

q2b2+p2a22pqabcosα=sin2α

p2a22pqabcosα+q2b2=sin2α

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What Is a Good Fuel?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon