The correct option is D 12
Let α=cos−1√p:β=cos−1√1−p
and γ=cos−1√1−q
or
cos α=√p:cos β=√1−p
and cos γ=√1−q.
Therefore sin α=√1−p,sin β=√p and sin γ=√q.
The given equation may be written as α+β+γ=3π4
or, α+β=3π4−γ
or, cos(α+β)=cos(3π4−γ)
⇒cos α cos β−sin α sin β = cos{π−(π4+γ)}=−cos(π4+γ)
⇒√p√1−p−√1−p√p =−(1√2√1−q−1√2.√q)
⇒0=√1−q−√q⇒1−q=q⇒q=12