If cos-1(xa)+cos-1(yb)=α, then (x2a2)-(2xyab)cosα+(y2b2)=
sin2α
cos2α
tan2α
cot2α
Explanation for the correct option:
Step 1: Apply inverse trigonometric identity.
Given, cos-1(xa)+cos-1(yb)=α,
By using identity, cos-1x+cos-1y=cos-1{xy-1-x2.1-y2}, we get
cos-1(xa)+cos-1(yb)=α
⇒cos-1{xyab-1-x2a2.1-y2b2}=α
⇒ xyab-1-x2a2.1-y2b2=cosα
⇒ xyab-cosα=1-x2a2.1-y2b2
Step 2: take squares on both the sides.
(xyab-cosα)2=(1-x2a2).(1-y2b2)
⇒x2y2a2b2-2xyabcosα+cos2α=1-y2b2-x2a2+x2y2a2b2
⇒ x2a2+y2b2-2xyabcosα=1-cos2α
∴x2a2+y2b2-2xyabcosα=sin2α
Hence, the correct option is (A).
prove the 90 degree is aright angle