If cos−1x+cos−1y+cos−1z=π(sec2(u)+sec4(v)+sec6(w)), where u,v,w are least non-negative angles such that u<v<w, then the value of x2000+y2002+z2004+36πu+v+w is
A
3π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
9π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
9
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D9 sec2(u),sec4(v),sec6(w)∈(1,∞) ⇒sec2(u)+sec4(v)+sec6(w)∈(3,∞) ⇒π(sec2(u)+sec4(v)+sec6(w))∈(3π,∞) Similarly cos−1x+cos−1y+cos−1z∈(0,3π) ∴ The equation is true only if it is equal to 3π ⇒cos−1x=cos−1y=cos−1z=π⇒x=y=z=−1 and sec2u=sec4v=sec6w=1 ⇒u=π,v=2π,w=3π⇒x2000+y2002+z2004+26πu+v+w=1+1+1+36π6π=9