We have,
cos−1x+cos−1y+cos−1z=π.....(1)
cos−1x+cos−1y=π−cos−1z
⇒cos−1[xy−√(1−x2)(1−y2)]=π−cos−1z
∴cos−1A+cos−1B=cos−1[AB−√(1−A2)(1−B2)]
⇒[xy−√(1−x2)(1−y2)]=cos(π−cos−1z)
⇒xy−√(1−x2)(1−y2)=−coscos−1z
⇒xy−√(1−x2)(1−y2)=−z
⇒xy+z=√(1−x2)(1−y2)
On squaring both side and we get,
(xy+z)2=(1−x2)(1−y2)
⇒x2y2+z2+2xyz=1−x2−y2+x2y2
⇒x2+y2+z2+2xyz=1
Hence proved.