If cos−1x+cos−1y=π2 and tan−1x−tan−1y=0 then x2+xy+y2 is equal to
18
32
1√2
0
tan−1x−tan−1y=0⇒x=y
cos−1x+cos−1y=π2⇒2cos−1x=π2
⇒x=cosπ4=1√2⇒x2=12
then x2+xy+y2=3x2=32