wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos1x2+cos1y3=a, then prove that 9x212xycosa+4y2=36sin2a

Open in App
Solution

Let cos1x2=α & cos1y3=β
Let α+β=a
cosa=cos(α+β)
=cosαcosβsinαsinβ
=x2×y31x241y29=cosa
xy64x249y29=cosa
xy6cosa=4x29y26
xy6cosa6=4x29y26
Squaring , we have
x2y2+36cos2a12xycosa=(4x2)(9y2)
x2y2+36cos2a12xycosa=364y29x2+x2y2
9x2+4y212xycosa=36(1cos2a)
9x2+4y212xycosa=36sin2a

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon