The correct options are
B There is exactly one value of p for which the system has a solution.
C x=cosπ24
Let cos−1x=a⇒a∈[0,π]
and sin−1y=b⇒b∈[−π2,π2]
⇒a+b2=pπ24 ...(1) ab2=π416 ...(2)
Since, b2∈[0,π24]
a+b2∈[0,π+π24]
From eqn (1),
0≤pπ24≤π+π24
⇒0≤p≤4π+1
Since, p∈Z, so p=0,1 or 2
Substitute the value of b2 from eqn(1) in eqn(2), we get
a(pπ24−a)=π416
⇒16a2−4pπ2a+π4=0 ...(3)
Since, a∈R, so D≥0
⇒16p2π4−64π4≥0
⇒p2≥4
⇒p=2
Put p=2 in eqn(3), we get
16a2−8π2a+π4=0
⇒(4a−π2)2=0
⇒a=π24=cos−1x
⇒x=cosπ24
From eqn(2),
⇒b2=π24
⇒b=±π2=sin−1y
⇒y=±1