If cos2 π8 is a root of equation x2 + ax + b = 0 where a, b ϵ Q then a + b =
−78
cos2π8 is a solution of x2 + ax + b = 0
∴ cos4π8+a cos2π8+b=0 ...(1)cosπ4=2 cos2π8−1⇒cos2π8=(1√2+1)12=cos4π8=(32+√2)14∴ (32+√2)14+a(1√2+1)12+b=0 (substituting in (1) ) 38+√24+a2√2+a2+b=0
∴ (38+a2+b)+√2(14+a4)=0Since a,b ϵ Q⇒38+a2+b=0 & a4+14=038−12+b=0 a=−1∴ b=18a+b=−1+18=−78