The correct option is A x=(2n+1)π4,n∈I
cos2x+cos22x+cos23x=1cos2x+(2cos2x−1)2+(4cos3x−3cosx)2=1cos2x+4cos4x−4cos2x+16cos6x+9cos2x−24cos4x=X16cos6x−20cos4x+6cos2x=0cos2x(16cos4x−20cos2x+6)=0cos2x(8cos2x−6)(2cos2x−1)=0cos2x=0,cos2x=68,cos2x=0henceoneofthesolutionisx=(2n+1)π4,n∈I