If cos2B=cos(A+C)cos(A−C), then tanA,tanB,tanC are in G.P.
A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A True Ans. True. We have cos2B1=cos(A+C)cos(A−C). Applying componendo and dividend, 1−cos2B1+cos2B=cos(A−C)−cos(A+C)cos(A−C)+cos(A+C) ⇒2sin2B2cos2B=2sinAsinC2cosAcosC ⇒tan2B=tanAtanC⇒tanA,tanB,tanC are in G.P.