If cos3x.sin 2x=∑nr=0arsin(rx),∀ x∈R, then choose the correct option(s).
n=5,a1=14
n=5,a3=18
cos3x.sin2x=cos2x.cosx.sin2x∑nr=0arsin(rx)=(1−cos 2x2)(2 sin 2x cos x2)=14(1−cos 2x)(sin 3x+sin x)=14(sin 3x+sin x−12(2 sin 3x cos 2x)−12(2 cos 2x sin x))=14(sin 3x+sin x−12(sin 5x+sin x)−12(sin 3x−sin x))∑nr=0ar(sin rx)=14(sin x+12sin 3x−12sin 5x)
∴a0sin 0x+a1sin x+a2sin 2x+a3sin 3x+a4sin 4x+a5sin 5x=14sin x+18sin 3x−18sin 5x.
n=5.
a1=14, a3=18, a5=−18