If cos3x.sin2x=∑nx=0arsin(πx),∀x∈R, then
n=5,a1=14
n=5,a3=18
cos3x.sin2x=cos2x.cosx.sin2x∑nx=0arsin(rx)=(1−cos2x2)(2sin2xcosx2)=14(1−cos2x)(sin3x+sinx)=14(sin3x+sinx−12(2sin3xcos2x)−12(2cos2xsinx))=14(sin3x+sinx−12(sin5x+sinx)−12(sin3x−sinx))∑nx=0ar(sinrx)=14(sinx+12sin3x−12sin5x)
∴a0sin0x+a1sinx+a2sin2x+a3sin3x+a4sin4x+a5sin5x=14(sinx)+18sin3x−18sin5x.
n=5.
a1=14,a3=18,a5=−18