wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos4θsec2α,12 and sin4θcosec2α are in AP, then cos8θsec6α ,12 and sin2θcosec6α are in

A
AP
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
GP
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
HP
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A AP
cos4θ.sec2α,12 and sin4θcsc2α are in AP
So,
cos4θ.sec2α,12andsin4θcsc2αsin4θcsc2α+cos4θsec2α2=12sin4θcsc2α+cos4θsec2α=1or,sin4θsin2α+cos4θcos2α=1[cscθ=1sinθ,secθ=1cosθ]or,sin4θcos2α+cos4θsin2α=sin2αor,(1cos2θ)2cos2α+cos4θsin2α=sin2α[1sin2θ=cos2θ]or,(12cos2θ+cos4θ)cos2α+cos4θsin2α=sin2αcos2αor,cos2α2cos2αcos2α+cos4θcos2α+cos4θsin2αsin2αcos2α=0or,cos2α(1sin2α)2cos2αcos2α+cos4θ(cos2α+sin2α)=0or,cos4α2cos2θcos2α+cos4θ=0or,(cos2αcos2θ)2=0or,cos2θcos2α=0or,cos2θ=cos2α(i)1sin2α=1sin2θsin2θ=sin2α(ii)
Terms cos4θsec2α,12,sin4θcsc2α are in AP
cos4θsec2α,12,sin4θcsc2αcos4θcos2α,12,sin4θsin2α
cos2θ,12,sin2θ are in AP.
So terms,
cos8θsec6α,12,sin2θcsc6αcos8θcos6θ,12,sin2θsin6θcos2θ,12,1sin4θ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relation between Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon