The correct option is
A AP
cos4θ.sec2α,12 and
sin4θcsc2α are in
APSo,
cos4θ.sec2α,12andsin4θcsc2αsin4θcsc2α+cos4θsec2α2=12sin4θcsc2α+cos4θsec2α=1or,sin4θsin2α+cos4θcos2α=1[∵cscθ=1sinθ,secθ=1cosθ]or,sin4θcos2α+cos4θsin2α=sin2αor,(1−cos2θ)2cos2α+cos4θsin2α=sin2α[∵1−sin2θ=cos2θ]or,(1−2cos2θ+cos4θ)cos2α+cos4θsin2α=sin2αcos2αor,cos2α−2cos2αcos2α+cos4θcos2α+cos4θsin2α−sin2αcos2α=0or,cos2α(1−sin2α)−2cos2αcos2α+cos4θ(cos2α+sin2α)=0or,cos4α−2cos2θcos2α+cos4θ=0or,(cos2α−cos2θ)2=0or,cos2θ−cos2α=0or,cos2θ=cos2α−(i)1−sin2α=1−sin2θsin2θ=sin2α−(ii)
Terms cos4θsec2α,12,sin4θcsc2α are in AP
cos4θsec2α,12,sin4θcsc2αcos4θcos2α,12,sin4θsin2α
cos2θ,12,sin2θ are in AP.
So terms,
cos8θsec6α,12,sin2θcsc6αcos8θcos6θ,12,sin2θsin6θcos2θ,12,1sin4θ