(i) cos4θ+cos2θ=1
⇒cos4θsin2θ=1
Or sin2θcos4θ=1
Now,
sec4θ−sec2θ=sec2θ(sec2θ−1)
=sec2θtan2θ=sin2θcos4θ=1
(ii) cot4θ−2cot2θ=1
We have to show
cot4θ=1+cot2θ=cosec2θ
Now, L.H.S.
cot4θ=cos4θsin4θ=cos4θsin2θ×cosecθ
=cosec2θ
R.H.S
(iii) tan4θ−tan2θ=1
We need to show
tan4θ=1+tan2θ
=sec2θ
Now, tan4θ=sin4θcos4θ
=sin2θcos4θ×sin2θ
=sin2θ