wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos4θ+cos2θ=1 then show that
(i) sec4θsec2θ=1
(ii) cot4θcot2θ=1
(iii) tan4θtan2θ=1

Open in App
Solution

(i) cos4θ+cos2θ=1

cos4θsin2θ=1

Or sin2θcos4θ=1

Now,

sec4θsec2θ=sec2θ(sec2θ1)

=sec2θtan2θ=sin2θcos4θ=1

(ii) cot4θ2cot2θ=1

We have to show

cot4θ=1+cot2θ=cosec2θ

Now, L.H.S.

cot4θ=cos4θsin4θ=cos4θsin2θ×cosecθ

=cosec2θ

R.H.S

(iii) tan4θtan2θ=1

We need to show

tan4θ=1+tan2θ

=sec2θ

Now, tan4θ=sin4θcos4θ

=sin2θcos4θ×sin2θ

=sin2θ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon