If cos7θ=cosθ-sin4θ, then the general value of θ is
nπ/4,nπ/4+π/18
nπ/3,nπ/3+(-1)nπ/18
nπ/4,nπ/3+(-1)nπ/18
nπ/6,nπ/3+(-1)nπ/18
Finding the general value of θ:
Given,
cos7θ=cosθ–sin4θsin4θ=cosθ–cos7θ
Using the formula
sin4θ=2sin(θ+7θ)2sin(7θ–θ)2 cosx–cosy=2sin(x+y)2sin(y–x)2
⇒ sin4θ=2sin4θsin3θ
⇒2sin4θsin3θ–sin4θ=0
⇒ sin4θ(2sin3θ–1)=0
⇒ sin4θ=0,sin3θ=1/2
⇒ 4θ=nπ,sin3θ=sinπ/6
⇒ θ=nπ/4,3θ=nπ+(-1)nπ/6
∴θ=nπ/4,nπ/3+(-1)nπ/18
Hence, option ‘C’ is correct.