If (cosA)3=(cosB)4=15,-π/2<A<0,-π/2<B<0, then the value of 2sinA+4sinB is
4
-2
-4
0
Explanation for the correct options:
Finding the value of 2sinA+4sinB:
Given,
(cosA)3=(cosB)4=15cosA=35,cosB=45
Also, given that -π/2<A<0,-π/2<B<0
In this interval sin is negative.
Thus, sinA=-45,sinB=-35(usingPythagoreantriple)
2sinA+4sinB=2(-4/5)+4(-3/5)=-8/5-12/5=-20/5=-4
The correct answer is option (C).
If tanA=34,cosB=941, where π<A<3π2 and 0<B<π2, find tan(A+B).