If cosA=45 then the value of tanA is
35
34
43
53
Explanation for correct option:
Find the required trigonometric value
Given, cosA=45
So,
tanA=sinAcosA=1-cos2AcosA[∵sin2A+cos2A=1⇒sinA=1-cos2A]=1-45245[∵cosA=45]=1-162545=25-162545=92545=3545=34
Hence, tanA=34, so, the correct option is (B).
The sum of the series 23!+45!+67!+... to ∞ = ae. Find (a+3)2.