If cos(A-B) = 3/5 and tanA*tanB = 2 then
(a) cosA*cosB= 1/5 (c) cos(A+B)= -1/5
(b) sinA*sinB= 2/5 (d) sinA*sinB=4/5
(a) cosA*cosB= 1/5 (c) cos(A+B)= -1/5
(b) sinA*sinB= 2/5
cos(A - B) = cosA . cosB + sinA . sinB.
Now, tanA.tanB = 2
sinA / cosA . sinB / cosB = 2
Therefore, sinA + sinB = 2.cosA.cosB
Now we have, cos(A - B) = cosA . cosB + sinA . sinB.
3/5 = cosA . cosB + 2. cosA . cosB
3/5 = 3 cosA . cosB
Therefore we have the answer, cosA. cosB = 1/5
b)
Given that cos (A-B) = 3/5
So cosAcosB + sinAsinB = 3/5.....eqn.1
Given tanA*tanB = 2
So (sinA/cosA)*(sinB/cosB) = 2
→ sinAsinB = 2 cosAcosB............eqn.2
Similarly , cosAcosB= ½(sinAsinB )........eqn.3
Putting eqn.2 in eqn.1 we get,
cosAcosB + 2cosAcosB =3/5
3cosAcosB =3/5
cosAcosB =1/5......eqn.4
Putting eqn.3 in eqn. 1 , we get,
½(sinAsinB) + sinAsinB = 3/5
3/2(sinAsinB) = 3/5
sinAsinB = 2/5.....eqn.5
c)
Given that cos (A-B) = 3/5
So cosAcosB + sinAsinB = 3/5.....eqn.1
Given tanA*tanB = 2
So (sinA/cosA)*(sinB/cosB) = 2
→ sinAsinB = 2 cosAcosB............eqn.2
Similarly , cosAcosB= ½(sinAsinB )........eqn.3
Putting eqn.2 in eqn.1 we get,
cosAcosB + 2cosAcosB =3/5
3cosAcosB =3/5
cosAcosB =1/5......eqn.4
Putting eqn.3 in eqn. 1 , we get,
½(sinAsinB) + sinAsinB = 3/5
3/2(sinAsinB) = 3/5
sinAsinB = 2/5.....eqn.5
We know that cos(A+B) = cosAcosB - sinAsinB.....eqn.6
Putting eqn.4 and eqn.5 in eqn.6 we get,
cos(A+B) = 1/5- 2/5
= -1/5. Proved.