If cos(A+B)sin(C−D)=cos(A−B)sin(C+D),provethattanA tanB tanC+tanD=0
We have,
cos(A+B)sin(C−D)=cos(A−B)sin(C+D)⇒cos(A+B)cos(A−B)=sin(C+D)sin(C−D) …(i)
Now,
cos(A+B)cos(A−B)=sin(C+D)sin(C−D)⇒cos(A+B)cos(A−B)+1=sin(C+D)sin(C−D)+1⇒cos(A+B)+cos(A−B)cos(A−B)=sin(C+D)+sin(C−D)sin(C−D) …(ii)
Again,
cos(A+B)cos(A−B)=sin(C+D)sin(C−D)
[By equation (i)]
⇒cos(A+B)cos(A−B)−1=sin(C+D)sin(C−D)−1⇒cos(A+B)−cos(A−B)cos(A−B)=sin(C+D)−sin(C−D)sin(C−D) …(iii)
Dividing equation (ii) by equation (iii), we get
cos(A+B)+cos(A−B)cos(A+B)−cos(A−B)=sin(C+D)+sin(C−D)sin(C+D)−sin(C−D)⇒cosA cosB−sinA sinB=sinC cosDcosC sinD
⇒2cos{A+B+A−B2}cos{A+B−A+B2}−2sin{A+B+A−B2}sin{A+B−A+B2}=2sin{C+D+C−D2}cos{C+D−C+D2}2sin{C+D−C+D2}cos{C+D+C−D2}
⇒1tanA tanB=sinC cosDcosC sinD⇒−1tanA tanB=tanCtanD⇒−tanD=tanA tanB+tanC=0⇒−tanA=tanB tanC=−tanD⇒−tanA=tanB tanC+tanD=0