wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos(A+B)sin(CD)=cos(AB)sin(C+D),provethattanA tanB tanC+tanD=0


    Open in App
    Solution

    We have,
    cos(A+B)sin(CD)=cos(AB)sin(C+D)cos(A+B)cos(AB)=sin(C+D)sin(CD) (i)
    Now,
    cos(A+B)cos(AB)=sin(C+D)sin(CD)cos(A+B)cos(AB)+1=sin(C+D)sin(CD)+1cos(A+B)+cos(AB)cos(AB)=sin(C+D)+sin(CD)sin(CD) (ii)
    Again,
    cos(A+B)cos(AB)=sin(C+D)sin(CD)
    [By equation (i)]
    cos(A+B)cos(AB)1=sin(C+D)sin(CD)1cos(A+B)cos(AB)cos(AB)=sin(C+D)sin(CD)sin(CD) (iii)
    Dividing equation (ii) by equation (iii), we get
    cos(A+B)+cos(AB)cos(A+B)cos(AB)=sin(C+D)+sin(CD)sin(C+D)sin(CD)cosA cosBsinA sinB=sinC cosDcosC sinD

    2cos{A+B+AB2}cos{A+BA+B2}2sin{A+B+AB2}sin{A+BA+B2}=2sin{C+D+CD2}cos{C+DC+D2}2sin{C+DC+D2}cos{C+D+CD2}
    1tanA tanB=sinC cosDcosC sinD1tanA tanB=tanCtanDtanD=tanA tanB+tanC=0tanA=tanB tanC=tanDtanA=tanB tanC+tanD=0


    flag
    Suggest Corrections
    thumbs-up
    0
    Join BYJU'S Learning Program
    similar_icon
    Related Videos
    thumbnail
    lock
    Transformations
    MATHEMATICS
    Watch in App
    Join BYJU'S Learning Program
    CrossIcon