wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

Open in App
Solution

cos (A + B) sin (C − D) = cos (A − B) sin (C + D)

[cosA cosB − sinA sinB] [sinC cosD − cosC sinD] = [cosA cosB + sinA sinB] [sinC cosD + cosC sinD]

Dividing both sides by cos A cos B cos C cos D,cosA cosB - sinA sinBsinC cosD- cosC sinDcosA cosB cosC cosD=cosA cosB + sinA sinBsinC cosD + cosC sinDcosA cosB cosC cosDcosA cosB- sinA sinBcosA cosB×sinCcosD - cosC sinDcosC cosD = cosA cosB + sinA sinBcosA cosB×sinC cosD + cosC sinDcosC cosD1 - tanA tanBtanC-tanD = 1 + tanA tanBtanC + tanDtanC - tanD -tanA tanB tanC + tanA tanB tanD = tanC + tanD + tanA tanB tanC + tanA tanB tanD-tanD - tanD = tanA tanB tanC + tanA tanB tanC-2tanD=2tanA tanB tanCtanA tanB tanC = -tanDtanA tanB tanC + tanD = 0Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon