wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos(A+B)sin(CD)=cos(AB)sin(C+D), then write the value tanA tanB tanC

Open in App
Solution

We have,
cos(A+B)sin(CD)=cos(AB)sin(C+D)cos(A+B)cos(AB)=sin(C+D)sin(CD) (i)cos(A+B)cos(AB)+1=sin(C+D)sin(CD)+1cos(A+B)+cos(AB)cos(AB)=sin(C+D)+sin(CD)sin(CD) (ii)
Again,

cos(A+B)cos(AB)=sin(C+D)sin(CD)[Byequation(i)]cos(A+B)cos(AB)1=sin(C+D)sin(CD)1

Dividing equation (ii) by equation (iii), we get
cos(A+B)+cos(AB)cos(A+B)cos(AB)=sin(C+D)+sin(CD)sin(CD)sin(CD)

=2cos{A+B+AB2}cos{A+BA+B2}2sin{A+B+AB2}sin{A+BA+B2}=2sin{C+D+CD2}cos{C+DC+D2}2sin{C+D+C+D2}cos{C+D+CD2}

cosA cosBsinA sinB=sinC sinDsinD sinC1tanA tanB=tanCtanDtanD=tanA tanB tanCtanA tanB tanC=tanD.



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon