If cos(A+B)sin(C−D)=cos(A−B)sin(C+D), then write the value tanA tanB tanC
We have,
cos(A+B)sin(C−D)=cos(A−B)sin(C+D)⇒cos(A+B)cos(A−B)=sin(C+D)sin(C−D) …(i)⇒cos(A+B)cos(A−B)+1=sin(C+D)sin(C−D)+1⇒cos(A+B)+cos(A−B)cos(A−B)=sin(C+D)+sin(C−D)sin(C−D) …(ii)
Again,
cos(A+B)cos(A−B)=sin(C+D)sin(C−D)[Byequation(i)]⇒cos(A+B)cos(A−B)−1=sin(C+D)sin(C−D)−1
Dividing equation (ii) by equation (iii), we get
cos(A+B)+cos(A−B)cos(A+B)−cos(A−B)=sin(C+D)+sin(C−D)sin(C−D)−sin(C−D)
=2cos{A+B+A−B2}cos{A+B−A+B2}−2sin{A+B+A−B2}sin{A+B−A+B2}=2sin{C+D+C−D2}cos{C+D−C+D2}2sin{C+D+C+D2}cos{C+D+C−D2}
⇒cosA cosB−sinA sinB=sinC sinDsinD sinC⇒1tanA tanB=tanCtanD⇒−tanD=tanA tanB tanC∴tanA tanB tanC=−tanD.