If cos a . cos 2a . cos 3a ............... cos999a = 12x.Where a = 2π1999.Find the value of x.
Given series cosa .cos 2a . cos 3a . . . . . . cos 999 is
Let p = cos a cos 2a cos 3a . . . . . . cos 999a
To proceed any cosine product series, we should multiple and divide by same angle sine function and use the formula sin 2a = 2 sin a . cos a
Let Q = sina .sin2a . sin 3a . . . . . . sin 999a
P × Q = (sin a .cos a) . (sin 2a . cos 2a) . - - - - - . (sin 999a. cos 999a)multiply both side by 2999
2999 P × Q = (2 sina .cos a) . (2 sin 2a .cos 2a) . - - - - - - (2 sin 999a .cos 999a)
2999 PQ = sin 2a .sin 4a . sin 8a . - - - - - - sin 1998a - - - - - - (1)
Let's take RHS here.
sin 2a . sin 4a . sin 8a . - - - - - - sin 998 .sin 1000a . 1002a - - - - - - sin 1998a
After sin 998a,
sin 1000a = sin 1000 ×2π1999 = -sin(2π−1000×2π1999) {a=2π1999}
= -sin(2π(1−10001999))
= -sin(2π9991999)
= -sin(999.2π1999) = -sin 999a
Similarly sin 10002a = sin 1002 × -sin(2π−1002×2π1999)
=−sin{2π(1−10021999)}
= -sin2a × 9971999 = -sin 997a
sin 1004a = -sin 995a
"
"
sin 1998a = -sin a
When we multiply the terms after sin 998a we will get all the odd angles terms sin a × sin 3a × sin 5a . . . . . sin 999a
RHS
= sin 2a .sin 4a .sin 8a . . . . . . sin 998a {(-sin 999a) (-sin 997a) (-sin 995a) . . . . . . (-sin a)}
(-) sign will be 998 times after multiplication 998 times it becomes positive (+ 1)
= sin a .sin 2a . sin 3a . sin 4a . sin 5a . . . . . sin 999a
= Q
From equation 1
2999 PQ = Q
p = 12999
p = 12x
x = 999